Name:	Period:
Name:	Period:

NOVA: "WHAT DARWIN NEVER KNEW"

1. Charles was offered a place on the British Navy ship, The H.M.S, whose mission was to survey the
waters around South America.
2. But one port of call on Darwin's voyage proved more important than all the others: the This
cluster of 13 isolated islands lies 600 miles off the coast of Ecuador, in the Pacific Ocean.
3. Originally, there must have been just one type of on the Galapagos, but over time it had diversified
into many kinds, with different beak shapes; the same for the tortoises. One type of must have
turned into many kinds, with different shells depending on which island they lived on.
4. Darwin had this amazingly bold idea: the tree of life—that all were connected.
5. Ultimately one type of could be transformed into something utterly different. It's a process Darwi called "descent with modification."
6. The pattern that Darwin saw was that the creatures that survived were those bestto the specific
environments they lived in.
7. Darwin realized that must be the starting point for change in nature. In any generation, the
animals in a litter are never quite the same. And in the wild, such a tiny might make all the differenc
between life and death.
8. These variations accumulate and eventually new species branch off. This is evolution by
It is one of the keys to how new species are formed.
9. The molecule is one of the real secrets of life. It's a perfect system for storing the vast amounts of
information that's necessary for building all kinds of creatures.
10 is a critical ingredient in the recipe for evolution. Without mutation, everything would stay
constant, generation after generation. Mutation generates, differences between individuals.
11. People were freaked out by the relatively small number of genes. It's down to something like
protein-coding genes in a human genome.
12. The genes determine where the head goes; where the limbs go, and what form they take:
whether they are arms, legs or wings.
13. It's not the genes you have but how you use them that creates in the animal kingdom. 46:15
14. Switches are not They don't make stuff like hair, cartilage or muscle, but they turn on
and off the genes that do.
15. But eventually, hunting through the vast stretch of D.N.A. that does not code for proteins, he found it, a section of
D.N.A. that had in the lake stickleback. These mutations meant that the switch was broken. It
didn't turn on the gene that makes spikes.

16. This was a revelation. The same genes were responsible for the beaks in all types	of finch. Any differences were in
and	
17. Scientists now realize that not all genes are created equal. Some make the stuff of	f our bodies, and
are needed to turn many of these stuff genes on and off. The	genes are what
throw these switches, which tell the stuff genes what to do and when.	
18. It all goes back to Darwin's idea of the tree of life, that all life-forms are ultimately	,, and from
the earliest common ancestor, over billions of years, they have	and diversified, so that creatures
that started out looking the same, evolved to become completely different.	
19. If Darwin were right, somewhere out there, there had to be a transitional form, a	fossil that was
part, but had the beginning of	
20. Tiktaalik is a perfect form. Much of its body is that of a fish.	It's covered in scales. But it also
had something very un-fishlike, an arm-like fin, or, perhaps, a fin-like arm. Tiktaalik ha	ad the bone structure that is seen in
the arms and legs of every limbed animal: one big bone at the top; tv	vo bones underneath, leading to a
cluster of bones in the wrist and ankle.	
21. Hox genes have been found in all complex animals, from the velvet worm that dat	es back some 600 million years, to
the modern human. And in all that time, the letters of their D.N.A. have remained virt	cually
22. These genes determine where the and the of the animal's	going to be; the top, the bottom;
the left, the right; the inside, the outside; where the eyes are going to be; where the l	egs are going to be; where the
gut's going to be; how many fingers they're going to have.	
23. Amazingly, in all four limbed animals, even us, exactly the same cred	eate the long, upper arm bone.
24. Oftentimes, the origin of whole new structures in evolution don't involve the origin	n of new or whole
new genetic recipes. Old genes can be reconfigured to make marvellously wonderful	new things.
25. Given all the obvious differences between humans and chimps, you might expect	our D.N.A. to be really different.
But, in fact, it's more like percent identical.	
26. One percent may not sound like much, but it's still some of	D.N.A.'s chemical letters: As, Ts, Cs
and Gs.	
27. In total, he has found some 21 different mutations responsible for microcephaly.	Sometimes, one of the D.N.A.'s
chemical letters is with another letter, sometimes letters are	entirely, but
whatever the defect is, they all stop the brain cells from dividing at a very early stage	of development.
28. The gene in humans was radically different from that found in chimps. There had	been a large series
of	
29. When she looked at that D.N.A. in chimps and compared it to the same D.N.A. in a	a chicken, it was different in just
letters. But in humans it was different by letters. A massive mutati	on.
30. Basically, you can make changes, just changing those switches.	So a change, a
couple of D.N.A. letters, could have a profound effect.	